

Quantum Computing and Data Security

Marie-Christine Röhsner Quantum Information Science and Quantum Computation Group, Faculty of Physics, University of Vienna

IPEN workshop 09.06.2017

Overview

Quantum Computers

A threat to classical cryptography

Quantum Cryptography

Security guaranteed by the laws of physics

Blind Quantum Computing

Perfect data privacy in cloud computing

Picture: Equinox Graphics

Quantum Computers

Computers based on the laws of quantum physics

Bit Qubit $|0\rangle$ $|-\rangle$ $|0\rangle$ $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

Easy readout

N qubits -2^{N} basis states Need measurement to readout \rightarrow collapse the state

Quantum Computers

Disadvantages

- Instable
 - Errors
 - Loss of quantum properties
- Hard to build
 - Isolation
 - Up-scaling
 - Memories

Advantages

- New resources
 - Parallelism
 - Interference
 - Entanglement
- Fast solutions for
 - Quantum Simulation
 - Search (Grover)
 - Factorization (Shor)

Shor's Algorithm

- Algorithm for integer factorization (N=p*q)
- RSA encryption is based on assumption that factoring is hard
- Quantum computer can solve it in polynomial time (BQP)
- Relies on superposition and quantum Fourier transform
- Therefore a large, universal quantum computer would break RSA

Quantum Computers - state of the art

- Different implementations
 - Photons (~10 qubits)
 - Ions (~14 qubits)
 - Superconductors (IBM: 17 qubits)
- Specialized machines (e.g. D-Wave >2000 "qubits")

Solution

Post quantum cryptography

- Classical Cryptography
- Not breakable by any known quantum algorithm
- Security not proven

Quantum cryptography

- Based on quantum systems
- Security theoretically guaranteed by the laws of physics
- First systems are commercially available

Quantum Cryptography

- Quantum Key Distribution (QKD)
- Distribution of a random one-time-pad
- Alice and Bob can find out if someone is listening

Pictures: Marie-Christine Röhsner

Quantum Cloud Computation

- Nearly classical clients can evaluate quantum algorithms
- Without leaking input, output or algorithm

When will this become a problem?

Time until full scale quantum computers

2017

Time needed to implement changes in security system

Time data needs to be secure

Thank you!

