
Diffix: High Utility Database
Anonymization

Paul Francis, Reinhard Munz
MPI-SWS

Sebastian Probst Eide
Aircloak

Background

• Researcher at MPI-SWS, co-founder of Aircloak
• Designed and built Diffix, a database anonymization technology that

provides:
• Remarkably good analytic utility
• Easy configuration
• Very strong anonymity

Background

• Researcher at MPI-SWS, co-founder of Aircloak
• Designed and built Diffix, a database anonymization technology that

provides:
• Remarkably good analytic utility
• Easy configuration
• Very strong anonymity

• In my opinion....

Original
Dataset

Query-by-Query
Anonymization

Analyst

Data Controller Secure Perimeter

Demo....

Diffix value proposition

• Anonymized data is not personal data (GDPR)
• Does not have to be protected as personal data

• But, process for getting DPA approval for an anonymity solution:
• Takes a long time
• Can be expensive
• Applies only narrowly (given data for given use case)
• Might not even be right! (approved solution is not really anonymous)

• Diffix promises “instant compliance” for anonymity

My problem...

• Who has the authority and ability to declare Diffix to be anonymous?
• For all use cases!

• What if they are wrong?
• (I’ve heard stories that suggest that DPAs are often “wrong” about anonymity)

• How do we establish and maintain confidence in the technology?

What we’ve done so far

• Extensive evaluation with CNIL
• French national data protection authority
• Very competent in anonymization technologies (Amandine Jambert, Vincent

Toubianis)

• Submitted 60 pages of documentation
• How Diffix works
• “Best effort” catalogue of attacks and defenses

• Used anonymity criteria in WP29 opinion on anonymity
• CNIL “thought about it”, doesn’t see a problem

• Is composing a letter to that effect

Issues

• CNIL (and us) might be missing something
• Unfortunately, Diffix is complex, no formal model

• Diffix has evolved since CNIL did the evaluation
• What is in the field now is not exactly what CNIL evaluated

• CNIL cannot possibly approve every change we make
• Conclusion:

• No authority currently exists that can adequately evaluate Diffix

Our idea moving forward

• Open Diffix to attack by the public
• “Challenge” system

• Bug bounty (cash prize for breaking anonymity)
• Capture the flag (prestige among tech community)

Challenge system

• Provide various types of datasets (geo-location, census, banking, ...)
• Let attacker provide their own datasets, but should be real data

• Attacker has more or less “background knowledge” of the dataset
• Complete knowledge of many columns and many rows
• Detailed but incomplete knowledge of many users

• Attacker gets unlimited number of queries
• Attacker makes statements of the following form:

• There is a single user with attributes A, B, and C ...
• “Singling out” (WP29)

Challenge system

• Attacker is more successful when:
• Attacker statements have higher confidence of being correct
• Attacker makes statements about more users
• Attacker requires less background knowledge

• Prize value corresponds with level of success

Feedback and questions?
francis@mpi-sws.org

SELECT count(DISTINCT uid), count_noise(DISTINCT uid),
avg(age), avg_noise(age),
stddev(age), stddev_noise(age),
min(age), max(age), median(age)

FROM (
SELECT patients.id AS uid,

2017 - year(date_of_birth) AS age
FROM patients

) t

SELECT 2017 - year(date_of_birth) AS age,
count(DISTINCT patients.id),
count_noise(DISTINCT patients.id)

FROM patients
GROUP BY age
ORDER BY age

SELECT din, extract_match(name, '^\w+') AS drugName,
count(*), count_noise(*) FROM (

SELECT DISTINCT t1.patient_id, visit_id, din, name FROM
(SELECT patient_id, visit_id, din, name
FROM pt_prescriptions) t1

JOIN
(SELECT distinct patient_id
FROM pt_prescriptions
WHERE din = '02303671') t2

ON t1.patient_id = t2.patient_id
) t

GROUP BY din, drugName
ORDER BY count(*) desc

SELECT din, name,
count(*), count_noise(*) FROM (

SELECT DISTINCT t1.patient_id, visit_id, din, name FROM
(SELECT patient_id, visit_id, din, name
FROM pt_prescriptions) t1

JOIN
(SELECT distinct patient_id
FROM pt_prescriptions
WHERE din = '02303671') t2

ON t1.patient_id = t2.patient_id
) t

GROUP BY din, name
ORDER BY count(*) desc

	Diffix: High Utility Database Anonymization
	Background
	Background
	Slide Number 4
	Demo....
	Slide Number 6
	Diffix value proposition
	My problem...
	What we’ve done so far
	Issues
	Our idea moving forward
	Challenge system
	Challenge system
	Feedback and questions?
	Slide Number 15
	Slide Number 16

