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—— Today’s agenda

0] Datarelease and challenges of preserving privacy

> Linkage and re-identification
> Inference and Attribution
> From pseudonymization to synthetic data

02 Synthetic data as a privacy mechanism

> By design
> Combined with other techniques
> Practical risk assessment
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Data release and
challenges of
preserving privacy

Risks and mitigation tactics




The risks related to data release

e (re-)identification and linkage

o (specific) Attribute inference
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lHlustration

Netflix movie preferences
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Narayanan A, Shmatikov V. Robust
de-anonymization of large sparse
datasets. InSecurity and Privacy, 2008. SP

2008. IEEE Symposium on 2008 May 18 (pp.

111-125). IEEE.
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Researchers re-identified
significant numbers of Netflix
users and their viewing
habits by matching the
redacted viewing information
with IMDDb ratings.




Linkage and re-identification

e Unigqueness

Simple Demographics Often Identify People Uniquely
Latanya Sweeny, 2000

e Background knowledge and auxiliary information
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Types 9f risk
—— Attribute Inference

e Generalinference: Learning that “smoking causes cancer”

e “Specific” inference: Information that can only be learned based on the
specific dataset at hand but not from the population
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Common data protection techniques

e Pseudonymization
e K-anonymization

e No data?
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In the beginning was the data

phone
015940192
010405919
011500159
010192042
015909191
015553436
016901095
017497297

018206810

@ Statice

race birthyear sex

white
white
white
black
black
black
white
white

white

1964
1964
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1965
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zip code medical condition

1203002
1203505
1203106
5403221
5403221
5403221
3003202
3003555

3003890

chest_pain
obesity
short_breath
heart_disease
heart_disease
heart_disease
ovarian cancer
ovarian cancer

prostate cancer

headache
10110010110100010
100000100000111010
10110010110100010
1010010110100010
010010110100010
10010010110100010
11110011110100010
10110010000000010

0000001110000010
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Pseudonymization: protecting “obvious identifiers”

phone race birthyear sex zipcode medical condition headache
I \hite 1964 f 1203002 chest_pain 10110010110100010
I \hite 1964 f 1203505 obesity 100000100000111010
I hite 1964 f 1203106 short_breath 10110010110100010
I black 1965 m 5403221 heart_disease 1010010110100010
I black 1965 m 5403221 heart_disease 010010110100010
S black 1965 m 5403221 heart_disease 10010010110100010
I \hite 1960 f 3003202 ovarian cancer 11110011110100010
I \hite 1960 f 3003555 ovarian cancer  10110010000000010
I hite 1960 m 3003890 prostate cancer 0000001110000010




— Pseudonymous data is personal data

.. Personal data which have undergone
pseudonymisation, which could be
attributed to a natural person by the use
of additional information should be
considered to be information on an
identifiable natural person.

-- Recital 26, GDPR




K-anonymity: protecting "quasi-identifiers”

race birthyear sex zip code | medical condition headache

white 1964 f 1203002 chest_pain 10110010110100010
white 1964 f 1203505 obesity 100000100000111010
white 1964 1203106 short_breath 10110010110100010
black 1965 5403221 heart_disease 1010010110100010
black 1965 5403221 heart_disease 010010110100010
black 1965 5403221 heart_disease = 10010010110100010
white 1960 3003202 ovarian cancer 11110011110100010
white 1960 3003555 ovarian cancer  10110010000000010

white 1960 3003890 prostate cancer 0000001110000010
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K-anonymity: protecting "quasi-identifiers”

Transform the data so that unique joins that expose sensitive attributes are no

|onger possible. race birthyear sex zipcode medical condition

phone race birthyear sex zip code white 1964 * 1203* chest_pain
015940192 white 1964  f 1203002 white L R - obesity
white 1964 - 1203* short_breath

black 1965 % 5403* heart_disease

phone race birthyear sex zip code black 1965 % 5403* heart_disease
015909191 black 1965 f 5403014 black 1965 * 5403* heart_disease
018206810 white 1960 m 3003890 white 1960 " 3003* ovarian cancer
white 1960 * 3003* ovarian cancer

white 1960 * 3003* prostate cancer

P. Samarati and L. Sweeney, Protecting Privacy when Disclosing Information: k-Anonymity and its Enforcement through Generalization and Suppression
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https://dataprivacylab.org/dataprivacy/projects/kanonymity/paper3.pdf

Can we do better than no data?

phone race birthyear sex zipcode medical condition headache
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Synthetic Data as a
protection mechanism

By Design and Risk-based




Privacy by Design

——  Whatis synthetic data?

Fully artificial, algorithmically generated
data that approximate original data and
that can be used for the same purposes

as the original.




Principles of fully Synthetic data

Learnt distribution

Original data synthetic data
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>
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Irreversible processing: There is no key to retrieve the original records from the
synthetic records
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Synthetic data meets Differential Privacy

Learnt distribution with
Differential Privacy

DP Synthetic US Army

PR S s e Differentially Private
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120

>

Weight (kg)
i
5
3

80

60

40

160 180 200 220 240
Height (cm)

Other techniques and principles can also be combined with synthetic data
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How do we measure the risks in Synthetic Data

e Linkage potential

e Attribute inference risk
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Linkage Potential

Objective: detect suspicious records, €.g. close matches and sensitive duplicates

Suspicious

Not suspicious

o ot g ‘ \f b o

Origindl crowd Syhthetic crowd
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Risk Assessment

Linkage Potential

Suspicious Records

185 (out of 8000 records) suspicious records found

Dataset Row Linkage Potential col_01 col_02 col_03 col_04 col_05 col_06 <col_07 col_08

Synthetic = 3273 35000 30000 1122.89 36 7.9 A A5 Columbia University
0.786
Original 2389 33500 33500 1063.74 36 8.9 A A5 best friends
Synthetic 590 28000 28000 708.29 60 23.63 F F2 The Clorox Company
0.786
Original 564 30000 30000 850.55 60 23.28 F F2 FRANZ FAMILY BAKERIES
Synthetic 4027 2800 8325 73.44 60 18.72 E E2 Mcdean inc
0.779
Original 5084 6000 6000 226.06 36 21.0 E E2 Nesco Service Company
Synthetic 5256 10000 15000 332.72 36 9.49 B B2 Dept. of Navy-Fleet Readiness Cet
0.772

Original 3191 10000 10000 328.06 36 1.14 B B2 Abbott Northwestern Hospital




Risk Assessment

Linkage Potential

A match between two rare values
has a greater importance than a
match between more common
values.

Original records are closer to

other original records, than they
are to synthetic records.
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Attribute Inference risk evaluator

Objective: detect specific information leaks about the data sample

age type_employer education marital occupation relationship race sex hr_per_week country income

20 Self-emp-not-inc HS-grad Never-married f§Farming-fishing Not-in-family White Male 33 United-States <=50K

1) The adversary 2) using this knowledge,
knows some of they search for best

) The results of the
inference complete their

the attributes of matches in the knowledge of the secret
a set of target synthetic data. attributes.
records
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Risk Assessment

Attribute Inference risk evaluator

mMeasure success of the attack for different amount of auxiliary knowledge,
comparing training and test data.
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Take-aways

e Releasing data is challenging
e Synthetic data can be both useful and private

e Understanding your risks is still crucial
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lllustration

Massachusetts Governor
health records

This privacy breach
Name

demonstrated clearly that Ethnicity Address
simply removing PIl is not i Zip Date
Diagnosis . registered
Birthdate
enough. Procedure Party
ST Gender
Medication affiliation
Charge Date last

Even 3 variables available
from a $25 voter registration
list were enough to be able to
uniquely identify individuals
from redacted medical Voter list Medical data
records.

voted

Sweeney, Latanya. Weaving Technology and Policy
Together to Maintain Confidentiality. Journal of Law,
Medicine and Ethics, Vol. 25 1997, p. 98-110
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Risks of “anonymous”
data

About Linkage and Inference




Synthetic Data as a
protection mechanism

By Design and Risk-lbased




A brief history of data
protection

From pseudonymization to synthetic data




A brief history of data
protection

From pseudonymization to synthetic data




... hopefully, we can do better!

a) We can do much better -> synthetic data: at this point, in
order not to repeat what previous speakers have said, we will
show a few cases showing similar performance for complex
tasks (ML, forecasts, etc.)
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K-anonymity (in all flavours) carries risk
... and significantly reduces utility

a) There are no “quasi-identifiers” : when it comes to privacy, all attributes are to be
protected
b) K-anonymous data has non-negligible risk of re-identification
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Initial sanitizing of original data

1) Risk Assessment and initial processing of original data
i) Detection of uniques / outliers
i) Detection of sensitive data (we can also assume this has been done before,
using other means, e.g. pseudonymization)
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Utility evaluations

A set of utility evaluations assess the quality and integrity of the synthetic datq,
including for Machine Learning applications.
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Case A: Privacy Analysis

Inference risk evaluator:

The inference is equally
successful on the control data
(unseen during synthesization)
This means that in the
synthesization process, no
specific information about some
of the records has leaked into
the synthetic data.
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Linkage Potential

Intuition: synthetic records should not be closer to the original ones than original
records are to other original records.

Objective: detect suspicious records, e.g. close matches and sensitive duplicates

Suspicious

Not suspicious

S Rl
Original crowd Synthetic crowd
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Risk Assessment

Attribute Inference risk evaluator

mMeasure success of the attack for different amount of auxiliary knowledge,
comparing training and test data.

cC 3.0 attack §
[®) baseline e
— 25 control g
+ 8
ol 5,
o) N 20 =
pl—
9]
85
® o
GC) 1.0 §
O o5 z
: o
&

0.0
attack 3
4 baseline - 'g
control 3
a
o
£
el
Q
o
1)
x
w
2
(=]
o
wn
.
o
g
<4
a

Overfitted model

0.0 0.2 0.4 0.6 0.8 1.0
Similarity between attacker guess and truth

@ Statice

1.0

0.8

0.6

0.4

0.2

0.0
1.0

0.8

0.6

0.4

0.2

0.0

— attack
—— baseline
— control

— attack
—— baseline
—— control

0.0 0.2 0.4 0.6 0.8 1.0
Lower bound on attack similarity score (6)

With 2 columns of AUX information

With 8 columns of AUX information

0.0

With 4 columns of AUX information With 6 columns of AUX information

attack attack attack
baseline baseline baseline

With 10 columns of AUX information ~ With 12 columns of AUX information

attack attack attack
baseline baseline baseline




Intro: why synthetic data?

e Synthetic data as data release mechanism

e [nternal, external
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