Pseudonymisation As A Service
and Data Protection Assisted by Computers

Cédric Lauradoux

8 décembre 2021
Why controllers fail with pseudonymisation?

Fundamental pseudonymisation problems:

1. Controllers don’t know what to protect.
2. Controllers don’t know which function to use.
 — People are not trained to data protection.

Can we solve these two issues?
— Use programs to identify sensitive data.
— Delegate/outsource pseudonymisation.
Importance of personal data identification

- **Fundamental task for Data Privacy Officers:**
 - Privacy Impact Assessment
 - Data Protection Enforcement

- **Difficult task for DPOs:**
 - Easy to underestimate data sensitivity.
 - Weak spot of the security foundations

- **Can computers assist DPOs?**
How to identify personal data

Main obstacles to automatisation:

① Machine learning
 - Filtering with efficient lists
 - Named Entity Recognition (NER)

② Pseudonym identification
 - Entropy (behave to random values)
 - Name-That-Hash

③ Statistics
There are some limits: sensitivity is contextual.
Local Pseudonymisation

- Data controllers have their pseudonymisation scheme. They need to use secure schemes.

- **People need to be trained.** People need to make the good choices to avoid mistakes and data breaches.

- **Alternative:** call an expert and outsource pseudonymisation.
Outsourced Pseudonymisation

Advantages

- **Training**: nobody need to be trained.
 You need to know an expert.

- **Up-to-date**: responsibility of the expert.

- **Limited responsibility**: you can blame the expert.

- **It is not my fault**:
Problem with Delegation?

Problems

- There are legal implications!
 The entity which pseudonymises is a data processor.
- The data must be transferred... (secure channel)
- We centralised personal data on a single server.
 Risk of data breaches!
- Cryptography to the rescue: OPRF.
An **Oblivious Pseudorandom function** (OPRF) is a protocol that allows a party Alice to securely compute a pseudorandom function \(f(k, x) \) on an input \(x \) contributed by Alice and on the key \(k \) contributed by Bob, such that:

— Alice doesn’t learn \(k \)
— Bob learns nothing from the interaction

\[
x \quad f(k, x) \quad k
\]

Alice \rightarrow Bob
Conclusion

- **Computers can assist DPOs and DPAs!**
 - We can automatise painful tasks (aka audit)
 - DPOs and DPAs can focus on more important topics.

- **We need Data Protection Assisted by Computer:**
 - Personal data detector (for PIA, ...)
 - Pseudonymisation As A Service

- **Otherwise, the GDPR cannot be fully enforced.**
 - We need to provide tools to DPOs and DPAs.